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Summary

In this final report, we indicate the main activities in the period from April 11, 2011, to April

10, 2014. First, we relate the main research objectives of our project to the corresponding

activities implemented in support of those objectives, including published papers. Then, we

indicate the educational activities implemented in support of the research. This project en-

abled our research group to attract, engage and retain graduate and undergraduate research

assistants into learning advanced science and engineering concepts on compressive sensing,

ground penetrating radar, microwave tomography, microwave laboratory instrumentation

and distributed computer simulations.
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1 Research Objectives

This section indicates the main research objectives stated in our project and their corre-

sponding research activities implemented in the period of April 2011 to April 2014.

1.1 Objective 1

To determine whether compressive sensing can provide image reconstruction with improved

resolution.

The PhD graduate student Lopez, Master graduate student Jimenez and von Borries

developed a set of Matlab functions to: (1) generate the circular projections (central slice

theorem) on the Fourier plane (implemented two options to simulate the tomography data

projections: modeling the direct problem in tomographic imaging with diffraction or gen-

erating projections using sampling on circular trajectories in the Fourier plane); (2) select

a subset of the sampling points on the circular trajectories in the Fourier plane; (3) gener-

ate the filter bank decomposition of those selected Fourier samples into sparse components

(two-dimensional high-pass components) and non-sparse component (two-dimensional low-

pass component); (4) reconstruct the sparse components using �p-minimization with p < 1

and reconstruct the non-sparse component using �p-minimization with p = 2 or p � 2;

and, finally, (5) reconstruct the desired cross-sectional image by applying the correspond-

ing reconstruction filter bank to the partial image components obtained in the optimization

process.

A function in Matlab allows the user to select the number of projections, the angle interval

between two consecutive projections (angle sampling interval of incident plane waves) and the

interval between two consecutive points on each projection (projection sampling interval).

The example provided in Figure 1 corresponds to 24 projections taken at an interval of

180 degrees. Note that: (1) the complex conjugate of each projection is used to complete

the total number of projections shown in Figure 1 (to force a real-valued solution in the

space domain); and (2) the projections extend beyond the region of interest delimited by

the inner square region and, for illustration purposes only, the projection sampling interval,

represented in Figure 1, is small (oversampling).

A second Matlab function allows the user to specify the projection sampling interval. The

sampling points inside the square region of interest shown in Figure 2 were generated at a

constant interval over the projection trajectories indicated previously in Figure 1. Note that:

(1) the final sampling interval in the Fourier plane follows a non-uniform sampling grid with

a dense sampling interval towards the center of the figure, in contrast to a sparse sampling

interval towards the borders of the square region; and (2) the horizontal scales were used

to indicate the size of the Cartesian sampling grid of the cross-section being reconstructed

(64×64 in the example of Figures 2).

The dense concentration of points towards the center of the Fourier plane and on the

intersections of any two projections (arc trajectories) generates an ill-conditioned matrix

3
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Figure 1. Projections on a square cross-section region in the Fourier plane

AAH , where A represents the sampling matrix, that increases the reconstruction times

(these points are equivalent to repeated measurements on the Fourier plane) [MvBAea09].

The user can reduce the redundancy of the sampling matrix by then applying a third

Matlab function that subsamples the dense irregular grid of sampling points (Figure 2).

The sampling points indicated in the square area of Figure 3 were obtained after selecting

only the points in Figure 2 that are at a certain minimum distance from each other. This

operation removes redundancies of the sampling points. Note that: (1) the dense arcs of

circles presented in Figure 2 were reduced to fewer points in Figure 3 and all the sampling

points on the intersections of any two arcs were reduced to a single point; in addition, (2) this

subsampling operation preserves the complex-conjugate symmetry of the sampling points (if

s is a sampling point, then its complex-conjugate value, s∗, is also a sampling point) which

forces a real-valued solution of the �p-minimization (real-valued reconstructed image).

We can use the 64 × 64 Shepp-Logan phantom shown in Figure 4 to test our image re-

construction algorithm based on filter bank decomposition and ellp-minimization. A fourth

Matlab function computes the fractional Fourier transform of the Shepp-Logan on an irreg-

ular grid (any irregular grid) of sampling points such as in the example shown in Figure

3. These fractional Fourier coefficients are then used to simulate the measurements that

we expect to obtain using our Microwave Tomographic Scanner (sampled projections in the

Fourier domain). These simulated measurements on an irregular Fourier grid feed the input

of a two-dimensional analysis four-channel filter bank. Figure 5 shows the block diagram of

the analysis and synthesis filter banks combined to the �p-minimization operations in each

subband to reconstruct the cross-sectional image of the target object. The blocks H0, Hd,

Hh and Hv in the analysis filter bank represent the Fourier transform of a Haar filter bank

with space-domain coefficients given, respectively, by

h0 =

ñ
1 1
1 1

ô
, hd =

ñ
1 −1

−1 1

ô
, hh =

ñ
1 1

−1 −1

ô
, and hv =

ñ
1 −1
1 −1

ô
, (1)
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Figure 2. Dense sampling grid of the projections represented on the Fourier plane.
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Figure 3. Dense sampling grid of the projections represented on the Fourier plane.

where h0 corresponds to a 2D low pass-filter, hd corresponds to a 2D filter in the diagonal

direction, hh in the horizontal direction and hv in the vertical direction.

The outputs Cd, Ch andCv correspond to the sparse components of the measurements on

the irregular grid of sampling points. The component Cd is the diagonal sparse component,

Ch is the horizontal sparse component and Cv is the vertical sparse component. The compo-

nent C0 corresponds to the non-sparse component (DC component) of the measurements on

the irregular grid of sampling points. To provide an example of these components represented

on a Cartesian sampling grid in the space-domain, we show in Figures 6(a) to 6(d) the anal-

ysis filter bank components c0(m,n), cd(m,n), ch(m,n) and cv(m,n) obtained by applying

H0(u, v), Hd(u, v), Hv(u, v), Hv(u, v) to the Fourier transform of the image shown in Figure

4. The frequency components C0, Cd, Ch and Cv on the irregular grid of sampling points

are used to reconstruct the frequency components on a Cartesian grid, C0(u, v), Cd(u, v),

5
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Figure 4. Shepp-Logan phantom used in the simulations: 64 × 64 image used to test our
compressive sensing reconstruction algorithms.

Ch(u, v) and Cv(u, v), respectively. An �2-minimization function (�p-minimization function

with p = 2) reconstructs the space-domain non-sparse low-pass component c0(m,n) and an

�p-minimization functions, with p < 1, reconstructs the space-domain sparse high-pass com-

ponents cd(m,n), ch(m,n) and cv(m,n). The �p-minimization problem can be represented

in the general form

min ||ci(u, v)||p such that Aci(u, v) = Ci, (2)

where i denotes one of the components of the analysis filter bank (0, d, h and v), A is

the fractional Fourier transformation matrix, ci is the ith space-domain component on a

Cartesian grid and Ci represents the ith frequency component of the measurements taken

on an irregular sampling grid.

We used the Matlab functions developed in [MvBAea09] to solve the �p-minimization

problem in (2), with p ≤ 2. Actually, in the reconstructed components shown in Figure 7,

the low-pass component c̃0(m,n) was obtained with p = 1.5 and the high-pass components

with p = 0.1. We didn’t conduct a too extensive investigation on the values of p to try to

improve even more our results (the remaining parameters in the Matlab function used to

solve the �p-minimization problems had the standard values indicated in [MvBAea09]), but

we observed that there was some flexibility in the numerical values of p. Note that: (1)

the �2-minimization to find the low-pass component had, actually, p = 1.5 (p < 2); and the

�p-minimization to find the high-pass components had p = 0.1 (we also used p = 0.01, with

equivalent results).

Finally, a two-dimensional synthesis filter bank reconstructs the cross-sectional image of

the object from the frequency components obtained in the minimization step. The analysis

and synthesis filter banks used in our scheme represented in Figure 5 form a perfect recon-

struction filter bank. The two-dimensional frequency response of a synthesis filter is obtained

6
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Synthesis
Filter Bank In
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�2-minimization

�p-minimization

�p-minimization
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Sparse Directional Components

F0

Fd

Fh

Fv

2D Reconstructed Image
in

frequency domain

Figure 5. Analysis four-channel filter banks used to subdivide the measurements into
low-pass component and directional sparse components (sparsity in the space domain) and
corresponding synthesis four-channel filter bank used to reconstruct the Fourier transform
of the cross-sectional image.

by taking the complex conjugate of the frequency response of the corresponding analysis fil-

ter. That is, Fi = H∗
i , for i = 0, d, h, v. Note that: (1) the filter banks used in our scheme

are oversampled (we don’t use downsampling in the analysis filter bank nor upsampling in

the synthesis filter bank); (2) we tested our scheme using one set of two-dimensional Haar

filter banks, but other wavelet filter banks could also be tested (see additional example in

Section 1.1.1. Figure 8 shows the final reconstructed cross-sectional image represented in

the space-domain.

The final reconstructed image in Figure 8 and the original Shepp-Logan phantom image

in Figure 4 show small perceptual differences, but the signal-to-error rate is not high (SER

= 0.1 dB). The error of the reconstructed image is higher than the reconstruction errors

reported in [MvBP13] and [MvBP09]; however, the result in Figure 8 was obtained under

more restrictive conditions. To limit the computation time needed for image reconstruc-

tion, we have to limit the size of the images and the number of measurements used in the

reconstruction. We have to use smaller size images and fewer measurements than in pre-

vious works because now we are computing the two-dimensional Fourier transform over a

non-Cartesian grid (diffraction tomographic data taken on a non-Cartesian grid) with a non-

fast Fourier transform algorithm. Previous work on tomographic image reconstruction using

compressive sensing assumed x-ray tomography: data collected on a rectangular grid and

computations using the fast Fourier transform. The poor distribution of the measurements

on a non-Cartesian grid (regions of low density sampling and regions of high density sam-

pling) and the reduced size of the images, reducing the proportional sparsity of the images,

may contribute to increase the reconstruction error; however, this problem needs further

investigation.

We are investigating the following points to improve our microwave tomographic imaging

7
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Figure 6. Components of the image shown in Figure 4 represented on a Cartesian sampling
grid in the space-domain: (a) low-pass component c0(m,n); (b) high-pass diagonal com-
ponent cd(m,n); (c) high-pass horizontal component ch(m,n); and (d) high-pass vertical
component cv(m,n).
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Figure 7. The components reconstructed by solving the �p-minimization problem in (2)
and represented on a Cartesian sampling grid in the space-domain: (a) low-pass component
c̃0(m,n); (b) high-pass diagonal component c̃d(m,n); (c) high-pass horizontal component
c̃h(m,n); and (d) high-pass vertical component c̃v(m,n).
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Figure 8. The reconstructed Shepp-Logan phantom.

scheme:

• faster computation of the fractional Fourier transform;

• other families of FIR filter banks to generate sparse components;

• optimization of the irregular grid of sampling points in the Fourier plane (we already

implemented this optimization in Matlab); and

• image reconstruction using real-world measurements (collected with our microwave

tomographic scanner).

1.1.1 Compressive Sensing with Prior Information
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Figure 9. Tiling of the Fourier plane by using the radon transform and cosine modulated
filter bank: (a) representation of bandpass frequency responses in the radon domain (sino-
gram); and (b) corresponding directional decomposition in the Fourier plane [vBMP07].

We used directional decomposition of the measurements taken in the Fourier plane to

implement a scheme for tomographic image reconstruction using compressive sensing with

10



prior information. The use of compressive sensing with prior information, as proposed in

our research objectives, targeted two points: (1) faster data collection – reduction of the

number of measurements required to reconstruct the original tomographic image; and (2)

faster image reconstruction.

We add prior information by implementing an iterative reconstruction of the original

tomographic image. The partial image reconstructed obtained from some of the directional

components of the original image (obtained with the measurements filtered in a certain

direction) are used as prior information for the reconstruction of new directional component

of the image. The tiling of the Fourier plane indicated in Figure 9 was used to implement

the directional image decomposition ant the iterative image reconstruction using compressive

sensing with prior information.

Note that to solve the �p-minimization problem in (2) we have to compute a fractional

Fourier transform represented by the matrix A. The size of this matrix depends on the num-

ber of measurements taken in the Fourier plane over the arc trajectories of the projections.

By carefully reducing the number of measurements and in this way the size of the matrix

A, we can both simplify the acquisition processes and reduce the time required to solve the

�p-minimization problem with prior information for each one of the directional components

of the tomographic image.

However, this scheme for compressive sensing with prior information did not not generate

the expected benefits. We could not observe any meaningful improvement neither in the re-

duction of the number of measurements needed for image reconstruction nor in the reduction

of computation times. Two points could be raised to explain the observed deficiency of our

scheme. The first point is related to the filter bank and directional filtering and the second

to prior information selection.

The sharp transition region of the frequency responses generated by the cosine modulated

filter bank used in the directional filtering, indicated in Figure 9, actually, contribute to

destroy the sparsity in the space domain making the reconstruction with prior information

less effective. To address this issue in our research, we also extracted prior information with

the filter bank in (1) that has very short length filters. In this case, the loss of directionality

in the filter bank decomposition, compared to the filter bank used to generate the plots

shown if Figure 9, contributed again to not any noticeable benefit in the use of compressive

sensing with prior information. The other point to explain the deficiency of our proposed

scheme concerns prior information selection. The selection of points in the space domain

from a partial reconstruction of the original image, based on their magnitude value above

a certain threshold, is clearly not working as effective prior information for the compressive

sensing algorithm and this selection needs further refinement.

The use of compressive sensing with prior information in the context of underground

penetrating radar and microwave tomography requires further investigation into the proposed

scheme based on directional image decomposition.
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1.1.2 Journal Paper

C. Jacques Miosso, R. F. von Borries, and J. H. Pierluissi. Compressive Sensing with Prior

Information − Requirements and Probabilities of Reconstruction in �1-Minimization.” IEEE

Transactions on Signal Processing, pages 2150–2164, May 2013.

• Abstract − In compressive sensing, prior information about the sparse representation’s

support reduces the theoretical minimum number of measurements that allows perfect

reconstruction. This theoretical lower bound corresponds to the ideal reconstruction

procedure based on �0-minimization, which is not practical for most real-life signals. In

this paper, we show that this type of prior information also improves the probability

of reconstruction from limited linear measurements when using the more practical �1-

minimization procedure, for the same considered stochastic signal. In order to prove

this result, we present the necessary and sufficient conditions for signal reconstruction

by �1-minimization when using prior information, for the particular case in which the

measurement domain and the sparse representation domain are related by the discrete

Fourier transform (DFT). We then prove that the lower bound for the probability of

attaining these conditions increases with the number of support locations in the prior

information set, and obtain the expression for the final probability of reconstruction

under specific conditions. The numerical simulations also include the case of a general

orthogonal transform, with equivalent results.

1.1.3 Conference Paper

The collaborators Berenice Verdin and von Borries created successfully an approach for

sensing with compression (compressive sensing) and prior information in full waveform lidar

that is able to reconstruct the complete range profile of lidar returns. In that research,

Verdin was supported by the National Geospatial-Intelligence Agency (NGIA). Two related

papers are listed below.

B. Verdin and R. von Borries. Lidar compressive sensing using chaotic waveform. In SPIE

9077, Radar Sensor Technology XVIII, Baltimore, MD, May 5–9 2014. [VvB14].

• Abstract − Full waveform Lidar systems have the ability of recording the complete

signal reflected from the illuminated target. Therefore, more detail information can

be obtained compared to conventional Lidar systems. The problem that is faced in

using full waveform Lidar is the acquisition of high volume data, a solution proposed

to solve this problem is compressive sensing. By using a compressive sensing approach

we can reduce the sampling rate and still be able to recover the signal. The reduction

is incorporated in the acquisition hardware, where we perform sensing of the signal

with compression. In this paper we propose to use a deterministic compressive sensing

approach by using a chaotic signal as the sensing matrix. The proposed approach gives

the range profile information without the requirement of further processing techniques.
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For comparison we used two different types of transmitted signals: chaotic and Linear

Frequency Modulated (LFM) signals. Simulations demonstrate that chaotic signals

give better results than the LFM signals. By using a chaotic signal we can obtain the

impulse response of the target by using less than 20 percent of the samples.

B. Verdin and R. von Borries. Lidar range profile reconstruction by using chaotic signals

and compressive sensing. In SPIE 8512, Infrared Sensors, Devices, and Applications II, San

Diego, CA, August 12 2012. [VvB12].

• Abstract − Full waveform lidar systems are capable of recording the complete return

signal from the laser illuminated target. By making use of the return full waveform,

one can obtain more detailed information about the target of interest than the simple

target range. The development of better methods to extract information from the

return signal can lead to better target characterization. Several methods have been

proposed in the literature to obtain the complete range profile or radar cross section

of the target.1, 2 In a previous work, we proposed to use a compressive sensing scheme

to acquire and compress the received signal, and at a post-processing stage reconstruct

the signal to obtain the range profile of the target. We extend this previous work

on full waveform lidar using chaotic signal by including additive white Gaussian noise

into the acquisition stage of the lidar system. The objective is to test the robustness

of the previously developed approach based on compressive sensing to different noise

level intensities. The simulation software Digital Imaging and Remote Sensing Image

Generation (DIRSIG) was used to simulate the range profile corresponding to a three-

dimensional scene. The simulation results indicate that the full range profile can be

reconstructed with a compressive sensing acquisition as low as 25 percent of the total

number of samples and with low root-mean-square error (RMSE). The proposed lidar

system with compressive sensing can be used to sense with compression and recover

the range target profile.

1.1.4 Summary

We were able to complete the image reconstruction using measurements over a non Cartesian

grid and fractional Fourier transform (journal paper and PhD dissertation under prepara-

tion). However, the scheme with prior information to reduce the number of measurements

and the computation time was not successful and it needs further investigation.

1.2 Objective 2

To determine if compressive sensing can reconstruct parts of the image that are missed with

standard algorithms.

Figure 10(a) shows a sparse image used in our preliminary Matlab simulations of to-

mographic image reconstruction. The reconstructed image using filtered back projection
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algorithm with measurements taken over straight line projections (as in x-ray tomography)

at 24 angles is very poor, as illustrated in the example of Figure 10(b). Our results of image

reconstruction using compressive sensing and measurements taken over circular trajectories

obtained from simulation of the direct microwave diffraction problem shows compelling im-

provements. The reconstructed image in the example of Figure 10(c) was obtained using

compressive sensing with measurements taken over circular trajectories (diffraction tomog-

raphy) at 24 equally spaced angles. Comparing Figures 10(c) and (b), we can notice clear

improvements obtained with compressive sensing when compared to a basic tomographic

image reconstruction technique.

1.2.1 Summary

Our tomographic image reconstruction algorithm based on compressive sensing outperforms

standard algorithms (higher signal-to-error ratio, SER). However, further tests with real

ultra wideband radar data need to be conducted.

1.3 Objective 3

To evaluate the computational expense of image reconstruction with compressive sensing.

We used Matlab to compute the �p-minimization discussed in Section 1.1 on a single core

with 2667 MHz and 2 GB of a computer node of the Distributed Computing Lab (DCL). We

are working with the DCL to reduce the total time required to complete the reconstruction

based on compressive sensing; however, the implementation using DCL depends on the final

algorithm for compressive sensing with prior information.

1.3.1 Summary

Our algorithm is computationally intensive even using prior information and distributed

computing. Image reconstruction in real-time is not feasible with the current algorithm.

1.4 Objective 4

To integrate compressive sensing into a practical ground penetrating radar with ultra-

wideband technology.

The team formed by M. Rojas, R. Barreto, C. Soto, G. Gonzalez, V. Jimenez, J. Pier-

luissi and R. von Borries worked on the development of the microwave tomographic scanner

design. Our microwave tomographic scanner is going to use a commercial stepper motor

positioning control (including stepper motors, controller and drivers and programming soft-

ware interface). The final block diagram is represented in Figure 11. Figure 12 shows the

three-dimensional view (sketched in Google SketchUp software) of the mechanical position-

ing system used in the microwave tomographic scanner and represented in simplified form

by the block “Sand Box” in Figure 11. The positioning control of the tomographic polar
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(a)

(b)

(c)
Figure 10. Image reconstruction with traditional filtered backprojection algorithm and
compressive sensing: (a) original sparse image; (b)reconstruction using filtered backprojetion
algorithm and 24 straight line projections; and (c) reconstruction using compressive sensing
and 24 circular projections. The same number of measurements was used in (b) and (c).
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coordinate (ρ, θ) of the sand box represented in Figure 12 uses a complete commercial so-

lution. Note that most of the small parts of this system, including the commercial stepper

motor positioning control, were acquired with funding available to the MSPL, Multi Sensing

Processing and Learning Lab, directed by PI von Borries.

1.4.1 Acquisition System Final Specification

• Waveform generator

1. AWG7122C – arbitrary waveform generator, 12 GSamples/s, 10 bits resolution

and two channels

2. AWG7122C06 – interleaved high bandwidth output

3. AWG7122C08 – fast sequence switching

The AWG7122C generates complex wideband signals across a frequency range of up

to 9.6 GHz with the two options (1) interleaved high bandwidth output AWG7122C06

and (2) fast sequence switching AWG7122C08 (up to 24 GSamples/s with these two

options). In addition, it has vertical resolution up to 10 bits. The user interface based

on Windows 7, enables the easy creation of arbitrary waveforms including Gaussian

pulses, first and second derivatives of Gaussian pulses (commonly used in ground pen-

etrating radar), and modulated versions of these waveforms. In this way, the complex

waveforms can be adjusted to compensate the intrinsic characteristics of our system

and the propagation media (pre-distortion of the arbitrary waveforms generated). In

addition, this arbitrary waveform generator enables creation of infinite waveform loops

and enhances the ability to replicate real-world signals. This instrumentation supports

network integration and USB ports for easy integration with a personal computer (PC).

• Waveform digitizer

1. DSA8300 – digital serial analyzer.

2. 80E07 – two remote sampling modules; two channels each, 30 GHz.

The DSA8300 digital sampling oscilloscope has A/D conversion with the best vertical

resolution, 16 bits, and very low time-base jitter of 425 fs on the 4 simultaneously ac-

quired channels with the two remote sampling 80E07 (and the total number of channels

can be expanded to up to 8, if two more remote sampling modules are added to the

current configuration). The DSA8300 has three acquisition modes: sample, envelope

and average. The average mode can be useful working with low amplitude signals re-

turned from our application in ground penetrating radar. The two 80E07 are 30 GHz

sampling modules, with low-noise signal acquisition (300 μV at 30 GHz), fast rise time

(11.7 ps from 10% to 90%), and dynamic range of 1 Vpp. Finally, the input impedance

of each channel is 50 Ω.
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Figure 11. Ground penetrating radar system.

(1)(2)

(3)

Figure 12. Microwave tomographic scanner showing: (1) sand box; (2) linear positioning
stage (ρ component of the tomographic projection); and (3) angular positioning stage (θ
component of the tomographic projection). Stepper motors and antennas are not repre-
sented.
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• Antennas We conducted research on the types of antennas to use in our system for

ground penetrating radar, and, initially, we had considered two types of antennas:

Vivaldi and horn. In our laboratory tests, we concluded that the Vivaldi antenna is

not a viable alternative, basically due to its poor directivity. We decided to use horn

antennas, however, they are more expensive and difficult to design than the Vivaldi.

Currently, we still don’t have the resources to purchase these antennas.

1. Horn antenna – Horn antennas have also wide frequency response and good di-

rectivity (better than Vivaldi antennas), however, they are more expensive and

difficult to manufacture. We are considering to buy a couple of used horn an-

tennas. Horn used antennas can be found a relatively low price providing good

frequency response.

• Amplifiers

1. 5866-107 (Picosecond) – linear amplifier with gain 26 dB and bandwidth from 2.5

kHz to 10 GHz; high gain with low power dissipation (1.7 W at +17 dBm); linear

output greater than 4 Vpp; RF input SMA jack and RF output SMA jack, 50 Ω

matched.

2. BZP112UB1 (B&K Technologies) – linear amplifier with gain 26 dB and band-

width from 0.1 MHz to 12 GHz; low noise figure 1.7 dB maximum and gain flatness

of ±1.2 dB maximum; output power 10 dBm; group delay ±15 ps in the range 2

GHz to 12GHz; RF input SMA jack and RF output SMA jack, 50 Ω matched.

These two amplifiers were purchased with funds provided by the Office of Sponsored

Projects (ORSP) of the University of Texas at El Paso (UTEP).

• RF cables

1. Semi-flexible coaxial cable (Picosecond) – electrical performance comparable to

semi-rigid; SMA 50 Ω; maximum frequency 26 GHz and low power attenuation 40

dB per 100 ft at 8 GHz; bends easily by hand; 100% shielded by two metal jackets

for low leakage. Only one cable 18 inches long was purchased at this point with

funds provided by the Office of Research and Sponsored Projects (ORSP) of the

University of Texas at El Paso (UTEP). The remaining cables will be acquired

with funds of project W911NF-11-1-0129, after the whole system is assembled

and we obtain a more precise estimate of the lengths for all the cables required.

• Sand box

We built a sand box out of a large plastic container and it is going to be installed in

the MSPL Lab to test our experimental setup.
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The team formed by M. Rojas, R. Barreto, C. Soto (investigators working in the first

phase of the microwave scanner project), V. Jimenez, G. Gonzalez and A. Orea (working in

the second phase of the microwave scanner project) and R. von Borries and Pierluissi worked

on the development of the microwave tomographic scanner. We completed the design and

are in the process of assembling the microwave scanner.

1.4.2 Low-Cost GPR System

Three undergraduate students developed a low-cost GPR system based on the USRP N210

hardware (by Ettus Research), Vivaldi antennas (built in our lab) and software program-

ming language Labview (by National Instruments). The students were partially supported by

the University of Texas System Louis Stokes Alliance for Minority Participation (LSAMP),

funded by the National Science Foundation (NSF), and by the National Center for Border

Security and Immigration (NCBSI), funded by the Department of Homeland Security (DHS).

The project is part of an ongoing effort to promote research and education on radar sys-

tems, and it will be used in our project in the preliminary tests of antennas and during

preliminary tests of ground penetrating radar data acquisition, before using the more ex-

pensive instrumentation. Figure 13 shows the low-cost GPR system connected to a desktop

computer.

1.4.3 Conference Paper

“Platform for Research and Education on Ground Penetrating Radar,” M. J. Salvador, V.

Jimenez, R. G. Lopez, R. von Borries, Proceedings of the SPIE, Volume 8714, id. 87141K,

9 pp. (2013) [SJLvB13].

• Abstract − Current commercial Ground Penetrating Radar (GPR) systems are found

at a high cost and allow little interaction between the user and the system. This

paper presents a low cost and flexible GPR platform attractive for use in education

and research based on the Universal Software Radio Peripheral (USRP) developed by

Ettus Research. A software application developed in Labview enables users to select

and modify fundamental parameters of the transmission and reception stages of a GPR

system. Users are able to modify parameters such as sampling and carrier frequencies,

waveform shape, amplitude, and bandwidth. The programmability of the USRP in

conjunction with the developed software tools provides a user-friendly GPR platform.

1.4.4 Summary

The construction of our ground penetrating radar incorporating tomographic acquisition

proved to be quite challenging. We needed to make several changes to complementary

components needed for the scanner due to: (a) non-availability; or (2) high costs. We made

good progress in the tomographic scanner but it is still under construction.
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Figure 13. Low-cost GPR system.

2 Teaching Excellence and Innovation in Support of

the Research

A valuable component of our project was to improve and speed up learning by UTEP’s stu-

dents in areas needed for this project. Addressing this objective, Dr. von Borries in collab-

oration with Dr. Patricia A. Nava (Associate Dean for Academic Affairs & Undergraduate

Studies in the College of Engineering and also member of our ECE department) and Dr.

Berenice Verdin, Postdoctoral Fellow for Teaching Excellence and Innovation, worked on

integrating new teaching technologies in the following course undergraduate course:

• Continuous-Time Signals and Systems – Summer of 2012, Fall 2012, Spring 2013, Fall

2013 and Spring 2014.

Note that our new learning environment can be extended to other classes in Electrical En-

gineering at either undergraduate or graduate levels such as cross-listed as graduate and

undergraduate course:

• Advanced Radar – it included material on ground penetrating radar and was taught

twice, in the Spring 2013 and the Spring 2014.

The new teaching environment included four technologies:

• Connexions – composing a textbook for continuous-time signals and systems.

• Interactive Lablets – interactive Mathematica simulation modules in CDF–Computational

Document File.
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• Quadbase – questions and answers in continuous-time signals and systems.

• OpenStax Tutor – assessing students learning.

The use of these technologies provided the following main benefits: (1) increased effective

learning; (2) easy customization of low-cost high-quality material to meet individual students’

needs; and (3) assessment tools that enabled the instructor to focus teaching efforts on areas

that students need most [MBVvB14].

2.1 Conference Abstract

“Improving Engineering Education at UTEP: Initial Implementation,” B. Verdin, R. von

Borries and P. Nava, The International Sun Conference on Teaching and Learning, February

28 to March 1, 2013, El Paso Texas. The undergraduate student E. Estrada worked as a

teaching assistant with von Borries.

• Abstract − UTEP has teamed with the “Signal Processing Education Network,”

(SPEN), in the implementation, assessment and evaluation of the use OpenStax Tutor.

This platform incorporates three technologies: Connexions, Interactive Lablets, and

Question/Response System to improve teaching and learning. OpenStax Tutor seeks

to develop materials that allow educators to break away from traditional textbook-

lecture-and-homework-based education, and create a new framework based on an en-

gaged community of educators, students, and industry professionals that continuously

collaborate, improve, and explore interactive content. During the fall semester of 2012,

the team of faculty at UTEP implemented a sophomore course on continuous-time sig-

nals and systems using the OpenStax Tutor.

2.2 Supporting Proposal

Note that Dr. Verdin was supported by UTEP, or more specifically:

• Postdoctoral Fellowship for Teaching Excellence and Innovation, P. A. Nava (PI), R.

von Borries (Co-PI), University of Texas at El Paso, UTEP’s Provost Office, $80,000,

from June 2012 to May 2014. We started the project funded by the UTEP’s Provost

Office in the Summer of 2012.
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pressive sensing reconstruction with prior information by iteratively reweighted

least-squares. IEEE Transactions on Signal Processing, 57(6):2424–2431, June

2009.

[MvBP09] C. J. Miosso, R. F. von Borries, and J. H. Pierluissi. Compressive sensing

method for improved reconstruction of gradient-sparse magnetic resonance im-

ages. In 42nd Asilomar Conference on Signals, Systems, and Computers, Pa-

cific Grove, CA, November 2009.

[MvBP13] C. Jacques Miosso, R. F. von Borries, and J. H. Pierluissi. Compressive sensing

with prior information - Requirements and probabilities of reconstruction in �1-

minimization. IEEE Transactions on Signal Processing, pages 2150–2164, May

2013.

[SJLvB13] M. Salvador, V. Jimenez, R. Lopez, and R. von Borries. Plataform for research

and education on ground penetrating radar. In SPIE Radar Sensor Technology

XVII, volume 8714, Baltimore, MD, May 31 2013.

[vBMP07] R. F. von Borries, C. Jacques Miosso, and C. Potes. Directional filter banks

for wavelet decomposition of images based on the Radon transform. In 41th

Asilomar Conference on Signals, Systems, and Computers, pages 2095–2099,

Pacific Grove, CA, November 2007. Invited paper.

[VvB12] B. Verdin and R. von Borries. Lidar range profile reconstruction by using

chaotic signals and compressive sensing. In SPIE 8512, Infrared Sensors, De-

vices, and Applications II, San Diego, CA, August 12 2012.

[VvB14] B. Verdin and R. von Borries. Lidar compressive sensing using chaotic wave-

form. In SPIE 9077, Radar Sensor Technology XVIII, Baltimore, MD, May

5–9 2014.

22




